Posts

Showing posts from May, 2022

Proofs of Logarithm Properties

logaM+logaN=logaMN  (1) proof:  assume: logaM=m,logaN=n  so:  am=M,an=NMN=aman=am+n  logaMN=m+n=logaM+logaN  logaMlogaN=logaMN (2) proof: assume: logaM=m,logaN=n so: am=M,an=NMN=aman=amnlogaMN=mn=logaMlogaN logaaM=M (3) proof: assume: aM=BlogaB=M so: logaaM=M alogaM=M (4) proof: assume: logaM=B so: aB=M B=logaM,aB=M aB=alogaM=M logaMN=NlogaM (5) proof: logaMN=loga(NMMM) logaM+logaN=logaMN  property (1) loga(NMMM)=NlogaM+logaM+logaM=NlogaM logab=logcblogca=lnblna=lgblga (6) ...