Proofs of Logarithm Properties

logaM+logaN=logaMN  (1)

proof: 

assume: logaM=m,logaN=n 

so:  am=M,an=NMN=aman=am+n 

logaMN=m+n=logaM+logaN 


logaMlogaN=logaMN (2)

proof:

assume: logaM=m,logaN=n

so: am=M,an=NMN=aman=amnlogaMN=mn=logaMlogaN


logaaM=M (3)

proof:

assume: aM=BlogaB=M

so: logaaM=M


alogaM=M (4)

proof:

assume: logaM=B

so: aB=M

B=logaM,aB=M

aB=alogaM=M


logaMN=NlogaM (5)

proof:

logaMN=loga(NMMM)

logaM+logaN=logaMN  property (1)

loga(NMMM)=NlogaM+logaM+logaM=NlogaM


logab=logcblogca=lnblna=lgblga (6)

proof:

assume: logab=m  then b=am,logcb=logcam,logcam=mlogca property (5)

logcb=mlogca=>logcblogca=m and m=logab

logab=logcblogca

logab=lnblna means c = e

logab=lgblga means c = 10


logaMbN=NMlogab (7)

proof:

logaMbN=logcbNlogcaM property (6)

logcbNlogcaM=NlogcbMlogca property (5)

NlogcbMlogca=NMlogcblogca

NMlogcblogca=NMlogab property (6)

logaMbN=NMlogab


log1ab=loga1b (8)

proof:

log1ab=loga1b=loga1b1=11logab property (7)

11logab=1logab=11logab=loga1b1=loga1b

log1ab=loga1b


logba=1logab (9)

proof:

assume: x=logab,y=logba

ax=b,by=a

x=logab=logaaba=logaa+logaba  property (1)

=logaa+logaaxby=logaa+logaaxlogaby property (2)

=logaa+xlogaaylogab property (5)

=1+xylogab

x=1+xylogabylogab=1

logab=x

yx=1y=1x

x=logab,y=logba

logba=1logab


alogbc=clogba (10)

proof:

Take logb on both sides:

alogbc=clogba

logbalogbc=logbclogba

logbclogba=logbalogbc property (5)

logbclogba=logbalogbc

alogbc=clogba



Comments

Popular posts from this blog

BdsDex: failed to load Boot0001 "UEFI BHYVE SATA DISK BHYVE-OABE-20A5-E582" from PciRoot(0x0)/Pci (0x2, 0x0)/Stat(0x0,0xFFFF,0x0) : Not Found

Install Shadowsocks-libev as Client on Debian Linux

FreeBSD安装SCIM中文输入法(csh/tcsh)