Proofs of Logarithm Properties
$log_aM + log_aN = log_aMN$ (1)
proof:
assume: $log_aM = m, log_aN = n$
so: $a^m = M, a^n = N \Rightarrow M \cdot N = a^m \cdot a^n = a^{m+n}$
$log_a{MN} = m + n = log_aM + log_aN$
$log_aM - log_aN = log_a\frac{M}{N}$ (2)
proof:
assume: $log_aM = m, log_aN = n$
so: $a^m = M, a^n = N \Rightarrow \frac{M}{N}=\frac{a^m}{a^n} = a^{m - n} \Rightarrow log_a{\frac{M}{N}} = m - n = log_aM - log_aN$
$log_aa^M = M$ (3)
proof:
assume: $a^M = B \Rightarrow log_aB = M$
so: $log_aa^M = M$
$a^{log_aM} = M$ (4)
proof:
assume: $log_aM = B$
so: $a^B = M$
$\because B = log_aM, a^B = M$
$\therefore a^B = a^{log_aM} = M$
$log_aM^N = Nlog_aM$ (5)
proof:
$log_aM^N = log_a(\overbrace{M \cdot M \cdots M}^{N})$
$\because log_aM + log_aN = log_aMN$ property (1)
$\therefore log_a(\overbrace{M \cdot M \cdots M}^{N}) = \overbrace{log_aM + log_aM + \cdots log_aM}^{N} = Nlog_aM$
$log_ab = \frac{log_cb}{log_ca}= \frac{lnb}{lna} = \frac{lgb}{lga}$ (6)
proof:
assume: $log_ab = m$ then $b=a^m, log_cb = log_ca^m, log_ca^m = mlog_ca$ property (5)
$\because log_cb = mlog_ca => \frac{log_cb}{log_ca} = m$ and $m = log_ab$
$\therefore log_ab = \frac{log_cb}{log_ca}$
$log_ab = \frac{lnb}{lna}$ means c = e
$log_ab = \frac{lgb}{lga}$ means c = 10
$log_{a^M}b^N = \frac{N}{M}log_ab$ (7)
proof:
$\because log_{a^M}{b^N} = \frac{log_cb^N}{log_ca^M}$ property (6)
$\frac{log_cb^N}{log_ca^M} = \frac{Nlog_cb}{Mlog_ca}$ property (5)
$\frac{Nlog_cb}{Mlog_ca} = \frac{N}{M} \frac{log_cb}{log_ca}$
$\frac{N}{M} \frac{log_cb}{log_ca} = \frac{N}{M}log_ab$ property (6)
$\therefore log_{a^M}{b^N} = \frac{N}{M}log_ab$
$log_{\frac{1}{a}}b = log_a{\frac{1}{b}}$ (8)
proof:
$\because log_{\frac{1}{a}}b = log_{a^{-1}}b = log_{a^{-1}}b^1 = \frac{1}{-1}log_ab$ property (7)
$\frac{1}{-1}log_ab = -1log_ab = \frac{-1}{1}log_ab = log_{a^1}{b^{-1}} = log_a{\frac{1}{b}}$
$\therefore log_{\frac{1}{a}}b = log_a{\frac{1}{b}}$
$log_ba = \frac{1}{log_ab}$ (9)
proof:
assume: $x = log_ab, y = log_ba$
$\Rightarrow a^x = b, b^y = a$
$x = log_ab = log_a{a\cdot\frac{b}{a}} = log_aa + log_a{\frac{b}{a}}$ property (1)
$= log_aa + log_a{\frac{a^x}{b^y}} = log_aa + log_a{a^x} - log_a{b^y}$ property (2)
$= log_aa + xlog_aa - ylog_ab$ property (5)
$=1+x - ylog_ab$
$x = 1 + x - ylog_ab \Rightarrow ylog_ab = 1$
$\because log_ab = x$
$\therefore yx = 1 \Rightarrow y = \frac{1}{x}$
$\because x = log_ab, y = log_ba$
$\therefore log_ba = \frac{1}{log_ab}$
$a^{log_bc} = c^{log_ba}$ (10)
proof:
Take $log_b$ on both sides:
$a^{log_bc} = c^{log_ba}$
$\Longleftrightarrow log_b{a^{log_bc}} = log_b{c^{log_ba}}$
$\Longleftrightarrow log_bc \cdot log_ba = log_ba \cdot log_bc$ property (5)
$\because log_bc \cdot log_ba = log_ba \cdot log_bc$
$\therefore a^{log_bc} = c^{log_ba}$
Comments
Post a Comment